
The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

On Generating Interleaved Spaced Practice Schedules

Kevin K. H. Cheung
kevin.cheung@carleton.ca

School of Mathematics and Statistics
Carleton University

1125 Colonel By Dr.,
Ottawa, ON K1S 5B6

Canada

Abstract

A number of studies have shown the effectiveness of interleaved spaced practice for learning
mathematics. Scheduling interleaved spaced practice is manually feasible when the number of
skills involved is low. When the number of skills is large, designing interleaved spaced practice
schedule manually can become prohibitive. In this note, an approach for automatic generation
of interleaved spaced practice schedules using techniques from operations research is described.
An accompanying proof-of-concept Linux/Unix command-line tool is included. The tool is open
source and is made freely available to spur further research interest in interleaved spaced practice
and the design of competency-based learning systems.

1 Introduction
Learning mathematics requires mastery of many skills as well as retention of skills learned. Skill
retention is critical to learning mathematics because new skills often depend on old skills. Given the
ever-growing body of mathematical knowledge and the increase in the use of sophisticated mathe-
matical tools in modern applications, mathematics educators are faced with the challenge of helping
students learn as quickly as possible and retain what they have learned as much and as long as possi-
ble. Poor retention leads to having to spend time on relearning or remediation.

As it is said, “Practice makes perfect.” An obvious way to attain proficiency and to remain so
is to practice frequently. However, as the number of acquired skills grow, practicing every skill that
one has acquired frequently becomes unrealistic. (For instance, Khan Academy [1] lists over one
thousand skills in its World of Math.) In addition, there is no need to practice every skill at the same
frequency. Time is better spent on practicing less proficient skills than proficient ones.

A popular approach to practicing mathematical skills as evidenced by the vast majority of math-
ematics textbooks is massed (or blocked) practice. Massed practice involves (over-)practicing a new
concept or skill, soon after it is learned, a high number of exercises within a concentrated time period.

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

Once the exercises for a particular concept are completed, one moves on to the next topic and the
process repeats.

Another approach is spaced practice. The basic idea of spaced practice is to spread the practice
over time rather than in concentrated periods. This approach has been used in language programs such
as Pimsleur [3] and Duo Lingo [4]. There are even mobile apps, such as Anki [5], that implement
spaced practice for more general skill acquisition.

As learning mathematics involves multiple topics, spaced practice in mathematics also often in-
volves interleaving as found in Saxon Math Curriculum [2]. Interleaving involves practicing different
skills in one particular session whereas pure spaced practice involves only one particular skill. Exer-
cises for a particular topic are spaced throughout a textbook or even across different grade levels. In
other words, in the exercise section of a particular topic, one also finds questions on topics covered in
earlier sections. This approach is also called the spiral approach. A number of studies have shown the
effectiveness of interleaved practice in improving learning mathematics. (See, for example, [6–9]).

Coming up with a interleaved spaced practice schedule manually does not seem challenging when
the number of topics is small and the topics follow the same spacing scheme. However, in reality,
a course or a textbook often covers a dozen or more topics, some of which contain dependencies on
other topics. In addition, not all topics require the same amount of work to learn initially or contain
similar number of practice exercises. As a result, designing a practice schedule that respects the
interleaving and spacing constraints with a balanced workload across practice sessions is best carried
out by an automated process.

In this note, we describe a proof-of-concept interleaved spaced practice schedule generation ap-
proach based on techniques in operations research. In particular, we specify an integer programming
model that seeks to minimize the number of practice sessions to cover all the topics subject to a
specified spacing scheme and maximum workload per practice session. With further refinement, the
approach can be incorporated into adaptive systems that tailor training for individual students. As part
of this note, we provide a Linux/Unix command-line tool written in C++ for generating the model
in CPLEX LP format (see [10]) that can be solved using appropriate software or online at the NEOS
Server for Optimization [11]. It is hoped that the approach discussed in this note and the accompany-
ing command-line tool will be useful for researchers studying spaced practice and further stimulate
research in the design of competency-based learning systems.

2 An illustrative example
In this section, we illustrate the various kinds of practice schedules with a simple example.

Suppose that we want to distribute the problems for the following three topics over a number
of practice sessions which will be called “assignments”, each of which having no more than five
problems.

1. area of a rectangle: 10 problems

2. area of a triangle: 10 problems

3. area of a circle: 10 problems

The following is a massed practice schedule without interleaving:

179

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

Assignment Rectangle Triangle Circle
1 5
2 5
3 5
4 5
5 5
6 5

The following is a spaced practice schedule without interleaving:

Assignment Rectangle Triangle Circle
1 5
2 5
3 5
4 5
5 5
6 5

The following is a massed practice schedule with a bit of interleaving:

Assignment Rectangle Triangle Circle
1 5
2 3 2
3 2 3
4 3 2
5 2 3
6 5

To form a meaningful interleaved spaced practice schedule, we specify a number of criteria. We
require that each topic be practiced at least four times, with the first practice containing at least
four problems. We also require that no more than one assignment be sandwiched between any two
practices for each topic. In other words, if assignment 2 contains practice on the area of a rectangle,
then there must be another practice on the area of a rectangle no later than assignment 4. The following
is an interleaved spaced practice schedule that respects all the mentioned criteria:

Assignment Rectangle Triangle Circle
1 5
2 1 4
3 1 4
4 1 2 2
5 2 1 2
6 1 2 2

Even for this small example, coming up with the above practice schedule by hand is not entirely
trivial. As the number of topics and the complexity of the criteria increase, an automated approach
is needed. In the next section, we describe an integer programming model for practice schedule
generation.

180

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

3 An integer programming model
To facilitate discussion, we introduce some notation for the various pieces of information that we need
to work with.

The topics are denoted by T1, . . . , Tk where k is a positive integer. Topic dependencies are spec-
ified as a set D of ordered pairs such that (i, j) ∈ D if and only if Ti is dependent on Tj; that is, Tj

must be practiced at least once before any practice for Ti can take place. For example, if the topics
are T1, T2, and T3, and D = {(3, 1), (3, 2)}, then T3 is dependent on both T1 and T2.

The integer M denotes the maximum number of assignments one can have in the schedule. Note
that if M is not sufficiently large, it might not be possible to schedule all the practices.

We use A to denote a sequence (of positive integers) of length M whose ith element Ai gives the
maximum number of problems the ith assignment can have.

For each i ∈ {1, . . . , k}, we have

• the positive integer Ni denoting the total number of practice problems for topic Ti;

• the sequence Pi = ((pi1, qi1), (pi2, qi2), . . . , (piri , qiri)) where ri is a positive integer at most M
and 1 ≤ pij ≤ qij ≤ Ni for all j = 1, . . . , ri. The values pij and qij specify the lower bound and
upper bound on the number of problems from topic Ti appearing in the jth practice, respectively.

We will make the assumption that Ni ≥
ri∑
j=1

pij because no schedule exists otherwise;

• the positive integer Ki denoting maximum number of problems for topic Ti that can appear in
each practice beyond the rith practice. To see why this number could be useful, note that the
integer ri (the number of elements in the sequence Pi) should be thought of as the minimum
number of practices for topic Ti that must take place. In reality, additional practices should be
allowed because we might not use up all the problems for topic Ti in the first ri practices. If we
do not want to impose such a restriction, we can simply set Ki = Ni.

• the sequence Si = ((li1, ui1), (li2, ui2), . . . , (lisi , uisi)) where si is a positive integer at most
M − 1 and 0 ≤ lij ≤ uij ≤ M − 1 for all j = 1, . . . , si. The values lij and uij specify the
lower bound and upper bound on the number of assignments between the jth practice and the
(j + 1)th practice of topic Ti, respectively. Note that lij = 0 means that the (j + 1)th practice
for topic Ti can be scheduled right after the jth practice. We will use the convention that the
jth element of Si, when j > si, be (0,∞). In other words, we can think of Si as a sequence of
length M − 1 with only the first si elements to be potentially different from (0,∞). With this
convention, we do not need to specify Si if we simply need the (j + 1)th practice of topic Ti to
be scheduled after the jth practice for all j.

Hence, for the example in Section 2, we have M = 6, A = (5, 5, 5, 5, 5, 5), and k = 3. Note
that it does not really matter which topic Ti represents since the data are the same for all three topics
and there are no topic dependencies in the example. Thus, N1 = N2 = N3 = 10, P1 = P2 = P3 =
((4, 10), (1, 10), (1, 10), (1, 10)), S1 = S2 = S3 = ((0, 1), (0, 1), (0, 1), (0, 1), (0, 1)).

With all required the notation in place, we now describe our integer programming model. First of
all, the variables for our integer programming model are listed in Table 1.

181

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

Variable Value
xai ∈ Z+

a = 1, . . . ,M,
i = 1, . . . , k

the number of problems from topic Ti assigned to assignment a

ya ∈ {0, 1}
a = 1, . . . ,M

equals 1 if and only if assignment a has at least one problem

nij ∈ Z+

i = 1, . . . , k,
j = 1, . . . ,M

the number of problems from topic Ti allocated towards the jth
practice

wij ∈ {0, 1}
i = 1, . . . , k,

j = ri + 1, . . . ,M
equals 1 if and only if there is a jth practice for topic Ti

zij ∈ {0, 1, . . . ,M}
i = 1, . . . , k,
j = 1, . . . ,M

the number of the assignment in which the jth practice of topic Ti

takes place
sija ∈ {0, 1}
i = 1, . . . , k,
j = 1, . . . ,M
a = 1, . . . ,M

equals 1 if and only if the jth practice of topic Ti takes place in
assignment a.

Table 1: Variables

Next, describe the constraints relating the variables.
For each a = 1, . . . ,M , ya needs to equal 1 when xai > 0 for some i. We can enforce this and the

upper bound on the number of problems on assignment a by the constraint
k∑

i=1

xai ≤ Aaya.

For each i = 1, . . . , k, we have constraints described below.

1. If all the problems for topic Ti must be scheduled, we will need the constraint
M∑
j=1

nij = Ni.

Otherwise, we will have the constraint
M∑
j=1

nij ≤ Ni.

2. For j = 1, . . . , ri, we have the bound constraints

pij ≤ nij ≤ qij

and for j = ri+1, . . . ,M , the constraint

nij ≤ Ki.

182

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

3. For j = ri + 1, . . . ,M , wij = 1 if and only if nij > 0. As nij cannot exceed Ni, the condition
can be enforced by the constraints

nij ≤ Niwij ≤ Ninij.

To ensure that there is no practice of zero problem followed by a practice with a positive number
of problems, we impose the constraints

wij ≤ wij−1 j = ri + 2, . . . ,M.

4. The jth practice must be assigned to exactly one assignment for each j = 1, . . . , ri. As we
may not necessarily need to have more than ri practices, we enforce that, for j > ri, the jth
practice be assigned to an assignment if and only if there will be a jth practice. Thus, for each
i = 1, . . . , k, we have the constraints:

M∑
a=1

sija = 1 j = 1, . . . , ri,

M∑
a=1

sija = wij j = ri + 1, . . . ,M.

Then, the assignment number zij for the jth practice can be set using the constraint

zij =
M∑
a=1

asija

for j = 1, . . . ,M.

5. If sija = 0 for all j = 1, . . . ,M , we need xai to be 0 because no practice of topic Ti is assigned
to assignment a. This is enforced with the constraint

xai ≤ Ni

M∑
j=1

sija.

However, if sija = 1 for some j ∈ {1, . . . ,M} (that is, the jth practice is assigned to assignment
a), we need xai to equal nij . This can be enforced with the constraints

nij −Ni(1− sija) ≤ xai ≤ nij +Ni(1− sija)

Note that when sija = 1, the constraint reduces to

xai = nij.

However, when sija = 0, the constraint reduces to

xai ≤ nij +Ni

which holds trivially since xai cannot exceed the total number of problems for topic Ti.

183

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

6. The spacing of successive practices are enforced by the constraints

lij−1 + 1 ≤ zij − zij−1 ≤ uij−1 + 1 j = 2, . . . , ri

for the first ri practices, and by the constraints

(lij−1 + 1 +M)wij −M ≤ zij − zij−1 ≤ (uij−1 + 1−M)wij +M j = ri + 1, . . . ,M

for the remaining practices, if any. Recall that we use the convention that lij = 0 and uij = ∞
if j > si.

To enforce topic dependencies, we include the constraints

zi11 ≥ zi21 + 1 ∀(i1, i2) ∈ D

Then, to obtain the largest assignment number over all assignments with a positive number of
problems, we minimize z subject to the above constraints and

z ≥ aya a = 1, . . . ,M.

In summary, the integer programming model for the case when all the problems must be scheduled
is as shown in Figure 1.

4 Command-line tool
As a proof of concept, we developed a Linux/Unix command-line tool, written in C++, that accepts
from the standard input the various parameters for the model and outputs a file in CPLEX LP format
containing the integer programming model to be solved. The source code and usage details can be
found in the accompanying files.

We used it to generate a schedule for the following test case. Four topics that appear in Khan
Academy’s [1] knowledge map were picked. For each topic, the number of problems was arbitrarily
set.

• T1: adding 1’s or 10’s (no regrouping), with N1 = 16 problems

• T2: regrouping when adding one-digit numbers, with N2 = 13 problems

• T3: adding two-digit numbers (no regrouping), with N2 = 11 problems

• T4: adding two-digit numbers by making tens, with N4 = 10 problems

The knowledge map gives the following topic dependencies: D = {(2, 1), (3, 1), (4, 2), (4, 3)}.
That is, T2 and T3 depend on T1 and T4 depends on both T1 and T2.

Suppose that there is a maximum of eight assignments, each of which can contain no more than
seven problems. For each topic, we want to practice at least three times, each of which with at least
three problems and at most five problems. We also want practices beyond the third one to contain no

184

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

min z
s.t. z ≥ aya a = 1, . . . ,M

k∑
i=1

xai ≤ Aaya, a = 1, . . . ,M

zi11 ≥ zi21 + 1 ∀(i1, i2) ∈ D
lij−1 + 1 ≤ zij − zij−1 ≤ uij−1 + 1 j = 2, . . . , ri
zij − zij−1 ≤ (uij−1 + 1−M)wij +M j = ri + 1, . . . ,M
(lij−1 + 1 +M)wij −M ≤ zij − zij−1 j = ri + 1, . . . ,M
nij −Ni(1− sija) ≤ xai ≤ nij +Ni(1− sija) j = 1, . . . ,M, a = 1, . . . ,M

xai ≤ Ni

M∑
j=1

sija a = 1, . . . ,M

zij =
M∑
a=1

asija j = 1, . . . ,M

M∑
a=1

sija = 1 j = 1, . . . , ri,

M∑
a=1

sija = wij j = ri + 1, . . . ,M.

nij ≤ Niwij ≤ Ninij j = ri + 1, . . . ,M.
wij ≤ wij−1 j = ri + 2, . . . ,M,
pij ≤ nij ≤ qij j = 1, . . . , ri,
nij ≤ Ki j = ri+1, . . . ,M,
M∑
j=1

nij = Ni.

ya ∈ {0, 1} a = 1, . . . ,M
wij ∈ {0, 1} j = ri + 1, . . . ,M
sija ∈ {0, 1} j = 1, . . . ,M, a = 1, . . . ,M
xai, nij, zij ∈ Z+ j = 1, . . . ,M, a = 1, . . . ,M

i = 1, . . . , k

Figure 1: Integer programming model

185

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

more than three problems. Then Pi = ((3, 5), (3, 5), (3, 5)) and Ki = 3 for i = 1, . . . , 4. We also
have M = 8 and A = (7, 7, 7, 7, 7, 7, 7, 7).

For the spacing scheme, suppose that there must at least one and at most two practices between the
first three practices for each topic, and at least two and at most four practices between the subsequent
practices for each topic. Then Si = ((1, 2), (1, 2), (2, 4), (2, 4), (2, 4), (2, 4), (2, 4)) for i = 1 . . . , 4.

Solving the integer programming model with IBM ILOG CPLEX 12.5.1.0 gives the schedule
shown in Table 2. A copy of the Mac OS X terminal session for obtaining this schedule is given in
the appendix.

Assignment T1 T2 T3 T4

1 5
2 4 3
3 4 3
4 4 3
5 4 3
6 5
7 5
8 3 4

Table 2: Interleaved spaced schedule

One can readily check that the above schedule satisfies all the constraints. As the model minimizes
the number of assignments subject to the given constraints, one concludes that there is no schedule
having fewer than eight assignments.

5 Concluding remarks
There is supporting evidence that interleaved spaced practice can improve the learning of mathemat-
ics. We developed a proof-of-concept command-line tool for automating interleaved spaced practice
schedule generation based on an integer programming model. The constraints that are taken into ac-
count capture some of the most prominent criteria for spaced schedules. The model can be extended
in various ways to accommodate more refined criteria.

The intention behind developing this tool and making it freely available is to spur further research
interest in interleaved spaced practice as well as on generating interleaved spaced schedules in an
offline or online setting. Incidentally, the integer programming model itself is worth investigating
further as solving such a model for more than a dozen topics with nontrivial dependencies could take
a substantial amount of computing resources. It is conceivable that alternate formulations or solution
methods could improve solution times.

Appendix
The command-line tool is named genip if built from the source file genip.cpp [S1] using the ac-
companying Makefile [S2]. Instructions for building and using genip are given in README.txt [S3].
All the relevant files are accessible under the Supplementary files section.

186

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

The tool accepts from the standard input a sequence of numbers following a certain format. A
convenient way to use the command-line tool is to first create a text file containing all the input num-
bers using a text editor (e.g. nano, emacs, vi etc.). Below is the content of the file (paper.txt [S4]
in the accompanying files) we created for the example in Section 4:

8 7 7 7 7 7 7 7 7
4 2 1 3 1 4 2 4 3
4
16 3 3 3 5 3 5 3 5 7 1 2 1 2 2 4 2 4 2 4 2 4 2 4
13 3 3 3 5 3 5 3 5 7 1 2 1 2 2 4 2 4 2 4 2 4 2 4
11 3 3 3 5 3 5 3 5 7 1 2 1 2 2 4 2 4 2 4 2 4 2 4
10 3 3 3 5 3 5 3 5 7 1 2 1 2 2 4 2 4 2 4 2 4 2 4

The first number that the tool expects is the number of assignments. It then expects the sequence
of numbers A. In our example, the number of assignments is 8 and A = (7, 7, 7, 7, 7, 7, 7, 7). The
first line of the file shown above shows these numbers.

The tool then expects the number of dependency pairs followed by the actual pairs of numbers for
the dependencies. In the second line of the file, we see the number 4 for the four topic dependencies
followed by four pairs of numbers that specify the dependencies.

The tool then expects the number of topics. In our case, the number is 4 and we see this number
in the fourth line of the file.

Once the number of topics k is read, the tool then expects k sequences of numbers, with the ith
sequence containing the following: the number of problems for topic Ti, the number ri, the pairs of
numbers in Pi, the number si, and the pairs of numbers in Si. For example, in the last line of the file,
we have the sequence for topic T4. In this sequence, the first number, 10, is the number of problems
for topic T4. The next number, 3, is the number of pairs in P4. The three pairs of numbers that follow
are the pairs in P4. Then the number 7 is the number of pairs in S4 and the seven pairs of numbers
that follow are the pairs in S4.

Below is a Mac OS X terminal session showing how the tool was run and how IBM ILOG CPLEX
was used to obtain the schedule. (The same commands should work on Linux or Unix in a bash shell
with IBM ILOG CPLEX installed. Instructions for using the online NEOS Optimization Server are
given in the accompanying README.txt [S3] file.) Note that the first command directs the content
of paper.txt to the standard input.

bash-3.2$./genip < paper.txt
of assignments: 8
Number of topics: 4

problems for topic 1: 16
Practice bounds:
(3, 5) (3, 5) (3, 5)
Spacing bounds:
(1, 2) (1, 2) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)

problems for topic 2: 13
Practice bounds:

187

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

(3, 5) (3, 5) (3, 5)
Spacing bounds:
(1, 2) (1, 2) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)

problems for topic 3: 11
Practice bounds:
(3, 5) (3, 5) (3, 5)
Spacing bounds:
(1, 2) (1, 2) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)

problems for topic 4: 10
Practice bounds:
(3, 5) (3, 5) (3, 5)
Spacing bounds:
(1, 2) (1, 2) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)
bash-3.2$ cplex

Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.5.1.0
with Simplex, Mixed Integer & Barrier Optimizers

5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21
Copyright IBM Corp. 1988, 2013. All Rights Reserved.

Type ’help’ for a list of available commands.
Type ’help’ followed by a command name for more
information on commands.

CPLEX> set mip display 0
New value for level of mixed integer node display: 0
CPLEX> read ip.lp
Problem ’ip.lp’ read.
Read time = 0.01 sec. (0.08 ticks)
CPLEX> o

Solution pool: 1 solution saved.

MIP - Integer optimal solution: Objective = 8.0000000000e+00
Solution time = 0.03 sec. Iterations = 23 Nodes = 0
Deterministic time = 5.95 ticks (217.52 ticks/sec)

CPLEX> disp sol var x*
Incumbent solution
Variable Name Solution Value
x1_1 5.000000
x2_2 4.000000
x2_3 3.000000
x3_1 4.000000
x3_4 3.000000

188

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

x4_2 4.000000
x4_3 3.000000
x5_1 4.000000
x5_4 3.000000
x6_2 5.000000
x7_3 5.000000
x8_1 3.000000
x8_4 4.000000
All other variables matching ’x*’ are 0.
CPLEX>

In the CPLEX session above, the command set mip display 0 was used to suppress mes-
sages from the mixed-integer programmming solver. It can be omitted if the messages are desired.

The command read ip.lp loads the model contained in the file ip.lp created by genip.
The command opt invokes the solver to solve the model.
The command disp sol var x* asks for a listing of the solution values of all the variables

beginning with the letter x. The variable xi j corresponds to the variable xij in our integer program-
ming model. For example, x3 4 is the number of problems from topic T4 appearing in assignment
3.

References
[1] Khan Academy. http://www.khanacademy.org. Last accessed: Jan 19, 2016.

[2] Saxon math curriculum. http://www.hmhco.com/shop/education-curriculum/
math/saxon-math. Last accessed: Jan 17, 2016.

[3] Pimsleur. http://www.pimsleur.com. Last accessed: Jan 17, 2016.

[4] Duo Lingo. http://www.duolingo.com. Last accessed: Jan 17, 2016.

[5] Anki. http://ankisrs.net. Last accessed: Jan 21, 2016.

[6] D. Rohrer and K. Taylor. The shuffling of mathematics practice problems boost learning. In-
structional Science, 35:481–498, 2007.

[7] D. Rohrer, R.F. Dedrick, K. Burgess. The benefit of interleaved mathematics practice is not lim-
ited to superficially similar kinds of problems. Psychonomic Bulletin and Review, 21(5):1323–
1330, 2014.

[8] D. Rohrer, R.F. Dedrick, S. Sterschic. Interleaved practice improves mathematics learning,
Journal of Educational Psychology, 107(3):900–908, 2015.

[9] M.A. Yazdani and E. Zebrowski. Spaced reinforcement: An effective approach to enhance the
achievement in plane geometry. Journal of Mathematical Sciences and Mathematics Education,
1(1):37–43.

189

http://www.khanacademy.org
http://www.hmhco.com/shop/education-curriculum/math/saxon-math
http://www.hmhco.com/shop/education-curriculum/math/saxon-math
http://www.pimsleur.com
http://www.duolingo.com
http://ankisrs.net

The Electronic Journal of Mathematics and Technology, Volume 10, Number 3, ISSN 1933-2823

[10] CPLEX LP format. http://plato.asu.edu/cplex_lp.pdf. Last accessed: Jan 17,
2016.

[11] IBM ILOG CPLEX MILP solver at NEOS Server for Optimization. http://www.
neos-server.org/neos/solvers/milp:CPLEX/LP.html. Last accessed: Jan 17,
2016.

Supplementary files
[S1] genip.cpp, C++ source file for the command-line tool generating the integer-programming

model.

[S2] Makefile, makefile for building genip.

[S3] README.txt, instructions for building genip and using IBM ILOG CPLEX or the online
NEOS Optimization Server to solve the integer programming model.

[S4] paper.txt, text file containing the numbers for inputting to genip for generating the integer-
programming model for the example in Section 4.

[S5] command.txt, text file containing the commands for using the online NEOS Optimization Server.

[S6] in.txt, text file containing the numbers for inputting to genip for generating the integer-
programming model for a small example described in README.txt.

[S7] small.txt, text file containing the numbers for inputting to genip for generating the integer-
programming model for the example in Section 2.

190

http://plato.asu.edu/cplex_lp.pdf
http://www.neos-server.org/neos/solvers/milp:CPLEX/LP.html
http://www.neos-server.org/neos/solvers/milp:CPLEX/LP.html
https://ejmt.mathandtech.org/Contents/v10n3n3/genip.cpp
https://ejmt.mathandtech.org/Contents/v10n3n3/Makefile
https://ejmt.mathandtech.org/Contents/v10n3n3/README.txt
https://ejmt.mathandtech.org/Contents/v10n3n3/paper.txt
https://ejmt.mathandtech.org/Contents/v10n3n3/command.txt
https://ejmt.mathandtech.org/Contents/v10n3n3/in.txt
https://ejmt.mathandtech.org/Contents/v10n3n3/small.txt

	Introduction
	An illustrative example
	An integer programming model
	Command-line tool
	Concluding remarks

